Instability of Nonnegative Solutions for a Class of Semipositone Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

Positive Solutions for a Class of Infinite Semipositone Problems

We analyze the positive solutions to the singular boundary value problem −∆u = λ[f(u)− 1/u];x ∈ Ω u = 0; x ∈ ∂Ω, where f is a C function in (0,∞), f(0) ≥ 0, f ′ > 0, lims→∞ f(s) s = 0, λ is a positive parameter, α ∈ (0, 1) and Ω is a bounded region in R, n ≥ 1 with C boundary for some γ ∈ (0, 1). In the case n = 1 we use the quadrature method and for n > 1 we use the method of sub-super solutio...

متن کامل

on the existence of nonnegative solutions for a class of fractional boundary value problems

‎in this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎by applying kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary bvp formulated by truncating the response function‎. ‎then the arzela--ascoli theorem is used to take $c^1$ ...

متن کامل

Uniqueness and Stability of Nonnegative Solutions for Semipositone Problems in a Ball

We study the uniqueness and stability of nonnegative solutions for classes of nonlinear elliptic Dirichlet problems on a ball, when the nonlinearity is monotone, negative at the origin, and either concave or convex.

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1991

ISSN: 0002-9939

DOI: 10.2307/2048487